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In another paper in this volume [1], 
we presented a rate-dependent 
continuum damage model for 
brittle materials under dynamic 

loading. In this paper, we will discuss 
the numerical algorithm for the model. 
In an analysis code, the total strain 
rate ε is obtained from the momentum 
equation and one needs to find the 
stress rate s. For the current model, 
the evolution equations for the stress 
and average crack size (damage) can be 
written as [1]

 ,  (1a)
 
                                                    ,         (1b)

where Cm is the compliance (4th-order 
tensor) of the matrix (undamaged) 
material, D(c) is the damage tensor 
given below; c = c(t) is the average 
crack radius, which evolves with the 
time. The terminal speed cmax for crack 
growth is either the shear wave speed 
of the matrix for closed cracks, or the 
Rayleigh wave speed for open cracks. 
The angled bracket in Eq. (1b) is the 
Macaulay bracket, which takes the value 
of the argument when positive and is 
zero otherwise. Crack growth (c > 0) 
occurs when the stress state is outside 
the damage surface (i.e., F(s,c) > 0). The 
expression of the damage surface is 
given in [1].

For an isotropic, linear elastic matrix 
material, the compliance tensor is  
Cm =1/(3K)Psp+1/(2G)Pd, where K   
and G are the bulk and shear moduli;   
Psp and Pd denote the spherical and 
deviatoric projection operators, 
respectively [1]. The damage tensor is 
related to the average crack radius (c)  
by D(c) = beN0c3P(s) where  
be = 64π(1-n)/(15G) is a material 
constant depending on the elastic 
properties of the undamaged material 
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(n is the Poisson’s ratio); N0 is the crack 
number density (number of cracks per 
unit material volume) and N0c3  is a 
scalar measure of damage. P(s) is a  
4th-order, dimensionless tensor 
determined by the signs and directions 
of the principal stresses [2]. The damage 
is isotropic when the principal stresses 
are all tensile or all compressive. When 
the principal stresses have mixed signs, 
however, the current model predicts 
anisotropic damage with the directions 
of tensile principal stresses accumulating 
more damage than other directions.

Consider a time step Dt = tn+1-tn with the 
total strain increment given by  
Dε = εDt. Suppose the stress and crack 
size (radius) at the beginning of the time 
step are given by (sn,cn). An implicit 
algorithm will be used for updating 
the material state (sn+1, cn+1). An 
implicit integration algorithm offers 
the advantage of placing no additional 
stability constraint on the size of the time 
step, which could be an issue for the 
explicit algorithm (as we will see in  
Fig. 1). The final crack size cn+1 is solved 
with the following procedure. First, 
define the trial state by assuming the step 
is elastic, i.e., there is no crack growth 
during the step,  
ctr = cn : str = sn +(Cm+D(cn))-1Dε.  
If both the stress state at the beginning 
of the time step and the trial stress state 
are inside or on the damage surface, i.e., 
F(sn,cn) ≤ 0 and F(str,cn) ≤ 0, then the step 
is indeed purely elastic. In this case, the 
trial state is the final solution, cn+1 = ctr, 
sn+1 = str. Otherwise, the step involves 
crack growth and a correction to the trial 
state is needed. Suppose F(str,cn) > 0, that 
is, the trial state is outside the damage 
surface. Applying the backward Euler 
integration scheme to that evolution 
equation gives the final stress as

                                                  ,   (2)
where the relationship cDt = cn+1-cn> 0 
has been used, and the dependency of 
D(cn+1) on cn+1 has been dropped for 
compactness. With the material state 
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at the beginning of the step (sn,cn) 
and the strain increment (Dε) given 
and fixed, the final stress sn+1 is a 
function of the final crack size cn+1 only. 
Applying the central difference scheme 
(the trapezoidal rule) to the evolution 
equations for the crack size [Eq. (1b)] 
yields

                                                             .                  
      
              (3)
With sn+1 given by Eq. (2) as a function 
of  cn+1 only, Eq. (3) is a nonlinear 
equation for cn+1, which can be solved 
by an iterative method, using the trial 
state (str,cn) as the starting state for the 
iteration.

Figure 1 compares the model predic-
tions using the implicit and explicit al-
gorithms with four different time steps 
(from 0.01ns to 10 ns). The loading is 
uniaxial strain with a strain rate of  
ε11 = 105/s, and the model material is 
silicon carbide ceramic [1]. As the time 
step is reduced, both the implicit and 
explicit algorithms converge to the same 
result (the curve in the middle with  
Dt ≤ 0.1ns). It is also shown that the im-
plicit algorithm gives a more accurate 
result for large time steps. For Dt =10 ns 
(corresponding to a strain increment of  
Dε11 = 10-3), the explicit algorithm pro-
duces severe oscillations.

For more information contact 
Ken Zuo at zuo@lanl.gov.
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Fig. 1.
Comparison of the 
predicted stress-
strain responses 
using implicit (I.) 
and explicit (E.) al-
gorithms with four 
time-step sizes: 10 
ns, 1 ns, 0.1 ns, and 
0.01 ns.
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